Blackwater Community School
 Curriculum Map 2015-2016

Fifth Grade Quarter 4

Module 6: Problem Solving with the Coordinate Plane Approximately 40 Days - Begin around March $\mathbf{2 2}^{\text {nd }}$

In this 40-day module, students develop a coordinate system for the first quadrant of the coordinate plane and use it to solve problems. Students use the familiar number line as an introduction to the idea of a coordinate, and they construct two perpendicular number lines to create a coordinate system on the plane. Students see that just as points on the line can be located by their distance from 0 , the plane's coordinate system can be used to locate and plot points using two coordinates. They then use the coordinate system to explore relationships between points, ordered pairs, patterns, lines and, more abstractly, the rules that generate them. This study culminates in an exploration of the coordinate plane in real world applications.

$\begin{aligned} & \text { ס } \\ & 0 \\ & 3 \\ & 0 \\ & \text { D. } \end{aligned}$	$\xrightarrow{\square}$		Arizona's College and Career Ready Standards	Explanations \& Examples	Notes \& Resources
5.0A	B	3	Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule "Add 3 " and the starting number 0 , and given the rule "Add 6" and the starting number 0 , generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so. 5.MP.2. Reason abstractly and quantitatively. 5.MP.7. Look for and make use of structure.	- Use the rule "add 3" to write a sequence of numbers. Starting with a 0 , students write $0,3,6,9,12, \ldots$ - Use the rule "add 6 " to write a sequence of numbers. Starting with 0 , students write $0,6,12,18,24, \ldots$ After comparing these two sequences, the students notice that each term in the second sequence is twice the corresponding terms of the first sequence. One way they justify this is by describing the patterns of the terms. Their justification may include some mathematical notation (See example below). A student may explain that both sequences start with zero and to generate each term of the second sequence he/she added 6, which is twice as much as was added to produce the terms in the first sequence. Students may also use the distributive property to describe the relationship between the two numerical patterns by reasoning that $6+6+6=2(3+3+3)$. $0 \quad 0,{ }^{+3} 3, \quad{ }^{+3} 6,{ }^{+3} 9,{ }^{+3} 12, \ldots$ $0 \quad 0,{ }^{+6} 6, \quad{ }^{+6} 12,{ }^{+6} 18,{ }^{+6} 24, \ldots$ Once students can describe that the second sequence of numbers is twice the corresponding terms of the first sequence, the terms can be written in ordered pairs and then graphed on a coordinate grid. They should recognize that each point on the graph represents two quantities in which the second quantity is twice the first quantity. Ordered pairs $(0,0)$ $(3,6)$ $(6,12)$ $(9,18)$	Engage NY M6 Lessons 7-12, 18- 20 enVision Topic 8

